All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

نویسندگان

  • Yu Jin Kang
  • Haegeun Chung
  • Chi-Hwan Han
  • Woong Kim
چکیده

All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic liquid incorporated polymer electrolytes for supercapacitor application

Recent advances in the study of ionic liquids based gel polymer electrolytes have been briefly reviewed in view of their electrochemical applications, particularly, their application as electrolytes in supercapacitors. The incorporation of ionic liquids in gel polymer electrolytes, instead of organic solvents like propylene carbonate, ethylene carbonate, etc., provide added effect in terms of t...

متن کامل

Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge.

Based on polyaniline-single-walled carbon nanotubes -sponge electrodes, highly compressible all-solid-state supercapacitors are prepared with an integrated configuration using a poly(vinyl alcohol) (PVA)/H2 SO4 gel as the electrolyte. The unique configuration enables the resultant supercapacitors to be compressed as an integrated unit arbitrarily during 60% compressible strain. Furthermore, the...

متن کامل

Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plast...

متن کامل

Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors

Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the gal...

متن کامل

C1jm11537e 16990..16996

In this work carbon based nanomaterials in ionic liquids have been studied as potential electrolytes for dye sensitised solar cells (DSSCs). Graphene, single wall carbon nanotubes (SWCNTs) and a mixture of graphene and SWCNTs were incorporated into 1-methyl-3-propylimidazolium iodide (PMII) ionic liquid. The resulting quasi-solid state electrolytes were sandwiched between TiO2 working electrode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2012